3.255 \(\int \frac{(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=99 \[ \frac{2 b (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac{A \tan (c+d x)}{a d} \]

[Out]

(2*b*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) - ((A*b -
 a*B)*ArcTanh[Sin[c + d*x]])/(a^2*d) + (A*Tan[c + d*x])/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.183228, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.194, Rules used = {3000, 12, 2747, 3770, 2659, 205} \[ \frac{2 b (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac{A \tan (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

(2*b*(A*b - a*B)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) - ((A*b -
 a*B)*ArcTanh[Sin[c + d*x]])/(a^2*d) + (A*Tan[c + d*x])/(a*d)

Rule 3000

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b^2 - a*b*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*
Sin[e + f*x])^(1 + n))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m
 + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n,
-1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(A+B \cos (c+d x)) \sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac{A \tan (c+d x)}{a d}+\frac{\int \frac{(-A b+a B) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a}\\ &=\frac{A \tan (c+d x)}{a d}+\frac{(-A b+a B) \int \frac{\sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a}\\ &=\frac{A \tan (c+d x)}{a d}-\frac{(A b-a B) \int \sec (c+d x) \, dx}{a^2}+\frac{(b (A b-a B)) \int \frac{1}{a+b \cos (c+d x)} \, dx}{a^2}\\ &=-\frac{(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac{A \tan (c+d x)}{a d}+\frac{(2 b (A b-a B)) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=\frac{2 b (A b-a B) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 \sqrt{a-b} \sqrt{a+b} d}-\frac{(A b-a B) \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac{A \tan (c+d x)}{a d}\\ \end{align*}

Mathematica [A]  time = 0.517713, size = 129, normalized size = 1.3 \[ \frac{-\frac{2 b (A b-a B) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\sqrt{b^2-a^2}}+(A b-a B) \left (\log \left (\cos \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )\right )+a A \tan (c+d x)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*Cos[c + d*x])*Sec[c + d*x]^2)/(a + b*Cos[c + d*x]),x]

[Out]

((-2*b*(A*b - a*B)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] + (A*b - a*B)*(Log[C
os[(c + d*x)/2] - Sin[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + a*A*Tan[c + d*x])/(a^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.181, size = 228, normalized size = 2.3 \begin{align*} -{\frac{A}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) ^{-1}}+{\frac{Ab}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -1 \right ) }-{\frac{A}{da} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-1}}-{\frac{Ab}{{a}^{2}d}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+{\frac{B}{da}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) }+2\,{\frac{A{b}^{2}}{{a}^{2}d\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) }-2\,{\frac{Bb}{da\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}\arctan \left ({\frac{\tan \left ( 1/2\,dx+c/2 \right ) \left ( a-b \right ) }{\sqrt{ \left ( a-b \right ) \left ( a+b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x)

[Out]

-1/d*A/a/(tan(1/2*d*x+1/2*c)-1)+1/d/a^2*ln(tan(1/2*d*x+1/2*c)-1)*A*b-1/d/a*ln(tan(1/2*d*x+1/2*c)-1)*B-1/d*A/a/
(tan(1/2*d*x+1/2*c)+1)-1/d/a^2*ln(tan(1/2*d*x+1/2*c)+1)*A*b+1/d/a*ln(tan(1/2*d*x+1/2*c)+1)*B+2/d*b^2/a^2/((a-b
)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*A-2/d*b/a/((a-b)*(a+b))^(1/2)*arctan(tan(1
/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.87672, size = 1049, normalized size = 10.6 \begin{align*} \left [\frac{{\left (B a b - A b^{2}\right )} \sqrt{-a^{2} + b^{2}} \cos \left (d x + c\right ) \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) +{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) -{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{4} - a^{2} b^{2}\right )} d \cos \left (d x + c\right )}, -\frac{2 \,{\left (B a b - A b^{2}\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right ) -{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) +{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \,{\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{4} - a^{2} b^{2}\right )} d \cos \left (d x + c\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*((B*a*b - A*b^2)*sqrt(-a^2 + b^2)*cos(d*x + c)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2
*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) +
a^2)) + (B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) - (B*a^3 - A*a^2*b - B*a*b^2 +
A*b^3)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(A*a^3 - A*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d*cos(d*x + c)
), -1/2*(2*(B*a*b - A*b^2)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c)))*cos(d*
x + c) - (B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) + (B*a^3 - A*a^2*b - B*a*b^2 +
 A*b^3)*cos(d*x + c)*log(-sin(d*x + c) + 1) - 2*(A*a^3 - A*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d*cos(d*x + c
))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \cos{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{a + b \cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**2/(a+b*cos(d*x+c)),x)

[Out]

Integral((A + B*cos(c + d*x))*sec(c + d*x)**2/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.36391, size = 236, normalized size = 2.38 \begin{align*} \frac{\frac{{\left (B a - A b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac{{\left (B a - A b\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} - \frac{2 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} a} + \frac{2 \,{\left (B a b - A b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} a^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

((B*a - A*b)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - (B*a - A*b)*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 - 2*A
*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a) + 2*(B*a*b - A*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*s
gn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*
a^2))/d